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Solutions have been obtained for a family of unsteady three-dimensional boundary- 
layer flows which approach separation as a result of the imposed pressure gradient. 
These solutions have been obtained in a co-ordinate system which is moving with 
a constant velocity relative to the body-fixed co-ordinate system. The flows studied 
are those which are steady in the moving co-ordinate system. The boundary-layer 
solutions have been obtained in the moving co-ordinate system using the technique 
of semi-similar solutions. The behaviour of the solutions as separation is approached 
has been used to infer the physical characteristics of unsteady three-dimensional 
separation. 

In  the numerical solutions of the three-dimensional unsteady lamina,r boundary- 
layer equations, subject to an imposed pressure distribution, the approach to separ- 
ation is characterized by a rapid increase in the number of iterationsrequired to obtain 
converged solutions a t  each station and a corresponding rapid increase in the com- 
ponent of velocity normal to the body surface. The solutions obtained indicate that 
separation is best observed in a co-ordinate system moving with separation where 
strea.mlines turn to form an envelope which is the separation line, as in steady three- 
dimensional flow, and that this process occurs within the boundary layer (away from 
the wall) as in the unsteady two-dimensional case. This description of three-dimensional 
unsteady separation is a generalization of the two-dimensional (Moore-Rott-Sears) 
model for unsteady separation. 

1. Introduction 
The nature of steady two-dimensional laminar boundary-layer separation is well 

known. Steady two-dimensional separation is characterized by the main flow turning 
rapidly away from the bounding surface and a region of reverse flow penetrating 
beneath this main flow. The prominent symptom of separation, in this case, is the 
vanishing of the wall shear stress. 

If either the restriction of steady flow or the restriction of two-dimensional flow 
is relaxed, the nature of separation becomes considerably more complicated. For 
unsteady two-dimensional flow, or for steady two-dimensional flow over a moving 
wall, there is growing evidence that boundary-layer separation is described by the 
Moore-Rott-Sears model. This model postulates that unsteady separation is charac- 
terized by the simultaneous vanishing of the shear stress and the velocity at  a point 
within the boundary layer, as seen by an observer moving with separation. In  recent 
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years, a number of numerical solutions have been obtained for laminar boundary- 
layer flows leading to  separation for cases in which separation is moving upstream. 
These results indicate that the boundary layer remains thin beyond the point of 
vanishing shear and that separation, in the sense of rapid growth of the viscous layer 
and a rapid increase in the vertical component of velocity, occurs in the vicinity of 
the point of simultaneous vanishing of the shear and velocity, as indicated by the 
Moore-Rott-Sears model. The case in which separation moves downstream remains 
an enigma. There are no solutions or experimental results as yet which verify the 
Moore-Rott-Sears model for this case. However, the recent results of Tsahalis (1 977) 
for steady flow over an upstream-moving wall, a problem which is closely related to  
the problem of unsteady flow with downstream-moving separation, tends to  sub- 
stantiate the Moore-Rott-Sears model. 

For steady three-dimensional flow, Maskell (1 955) has pointed out that there are 
two possible modes of separation, modes he terms ‘singular’ separation and ‘ ordinary’ 
separation. For ‘singular ’ separation, both components of the wall shear vanish 
simultaneously. This mode of separation appears to be the exception rather than the 
rule. On a bluff asymmetric body at an angle of attack, however, singular separation 
occurs a t  the two points along the separation line where it crosses the plane of sym- 
metry. Away from these two points, ordinary separation occurs. For ordinary separ- 
ation, the limiting or ‘wall ’ streamlines run close together to form a line of separation. 
Ordinary separation appears to be the dominant form of separation on most three- 
dimensional bodies. Flow-visualization studies (e.g. Peake, Rainbird & Atraghji 1972) 
and recent numerical computations (Williams 1975) tend to  verify the concepts of 
steady three-dimensional separation advanced by Maskell. 

A question quite naturally arises as to the nature of unsteady three-dimensional 
laminar boundary-layer separation. Is separation in this case a composite of unsteady 
two-dimensional separation, in which the identifying characteristics occur away from 
the wall and in a moving co-ordinate system, and steady three-dimensional separation, 
in which the identifying characteristic is generally streamlines which turn and form 
an envelope which is the separation line? The present work gives results of an in- 
vestigation intended to answer, a t  least partially, this question. Solutions to the un- 
steady three-dimensional laminar boundary-layer equations are obtained for several 
cases in which the boundary-layer flow approaches separation and the nature of the 
solutions in the vicinity of separation is used to infer the nature of unsteady three- 
dimensional separation. 

If the nature of unsteady three-dimensional separation is to be inferred from 
solutions of the unsteady three-dimensional boundary-layer equations, two serious 
difficulties must be overcome. The first of these has nothing whatsoever to do with 
separation; it is simply the practical mathematical problem of obtaining solutions to 
a set of boundary-layer equations in four independent variables (the three spatial 
co-ordinates and time). There are available a number of techniques for solving two- 
dimensional problems and a few techniques for solving problems in three independent 
variables, but as far as the author can tell, there are no general techniques available 
for solving boundary-layer problems with four independent variables. This difficulty 
is overcome in the present work by a combination of a transformation to a moving 
co-ordinate system and use of the method of semi-similar solutions. In $2,  it is shown 
that, if the velocity components a t  the edge of the three-dimensional boundary layer 
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are functions of linear combinations of Z and f and of ij and f, then in the appropriate 
moving co-ordinate system the flow appears as a steady flow over a moving waJ1. For 
this class of flows, then, the problem, viewed in the moving co-ordinate system, is a 
problem in three independent variables (the spatial co-ordinates) and the effect of 
unsteadiness appear,. as a parameter (the velocity of the moving wall) rather than as 
an independent variable. The present analysis is limited to these flows which are 
steady in the moving co-ordinate system. 

Even after the transformation to the moving co-ordinate system, the problem is 
one in three independent variables. In  $3,  the number of independent variables is 
reduced further by applying the method of semi-similar solutions. Mathematically, 
this method is a technique which reduces the number of independent variables from 
three to two by an appropriate scaling. In  cases where separation occurs, the technique 
has a more important physical interpretation. It may be viewed as a scaling of the 
two surface co-ordinates such that separation occurs at  a constant value of the new 
scaled co-ordinate (although the value of the new scaled co-ordinate corresponding 
to separation is unknown a priori). This property has proved to be extremely helpful 
in determining, from the solutions, the physical characteristics of separation in the 
two-dimensional unsteady case (Williams & Johnson 1974) and in the three-dimen- 
sional steady case (Williams 1975). 

The net result of the two transformations, the transformation to the moving co- 
ordinate system and the semi-similar transformation, is that the resulting problem is 
one in two independent variables. The transformed problem may be solved by 
standard numerical methods which have been shown to be rapid and accurate. 

Assuming that solutions may be obtained by the method outlined above, for an 
unsteady three-dimensional flow which leads to separation one encounters a second 
and perhaps more serious difficulty. This is the difficulty of identifying three-dimen- 
sional unsteady separation. What characteristic features of the boundary layer or the 
behaviour of the solutions should one look for in order to identify separation! A t  
present, there are neither solutions to the unsteady three-dimensional boundary-layer 
equations nor experimental investigations which shed light on this problem. 

Some indication ofwhat features should be looked for may be obtained by reviewing 
the features which are found in solutions to other types of flow leading to separation. 
For two-dimensional steady separation, the generally accepted physical symptom of 
separation is the vanishing of the wall shear stress. Numerical solutions of the two- 
dimensional steady boundary-layer equations for flows leading to separation exhibit 
an increase in the number of iterations required to obtain a converged solution at 
each station and a rapid increase in the vertical component of velocity as separation 
is approached (assuming that the external pressure distribution is prescribed). This 
behaviour is generally accepted as an indication of the Goldstein-type singularity at 
separation. 

For two-dimensional unsteady separation or for two-dimensional steady separation 
over a moving wall, there is increasing analytical evidence (Sears & Telionis 1975: 
Telionis 1975; Williams 1977) that the physical symptom of separation is the simul- 
taneous vanishing of the shear stress and the velocity away from the wall in a co- 
ordinate system moving with separation. Numerical solutions for these flows exhibit 
an increase in the number of iterations required to obtain a converged solution at  each 
station and a rapid increase in the vertical component of velocity as separation is 
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approached. This behaviour is also believed to be the result of a Goldstein-type 
singularity at  separation, but the nature of this singularity has not been definitely 
demonstrated. 

For three-dimensional steady separation, both analytical and experimental results 
verify the conclusion of Maskell (1955) that there are two modes of separation: singular 
separation and ordinary separation, The physical symptom of singular separation is 
the simultaneous vanishing of both components of the wall shear stress either at  a 
point on the separation line or along the separation line. The physical symptom of 
ordinary separation is the turning of the wall or limiting streamlines to form an 
envelope which is the separation line. For both singular and ordinary separation, 
numerical solutions leading to separation exhibit an increase in the number of itera- 
tions required to obtain a converged solution, at  each station, and a rapid increase 
in the vertical component of velocity as separation is approached. 

The above discussion clearly indicates that, although the physical symptoms of 
separation are different for each type of flow, numerical solutions in each case exhibit 
the same characteristics. In the numerical solutions separation is heralded by (i) an 
increase in the number of iterations required to obtain convergence at  each station and 
(ii) a rapid increase of the vertical component of velocity. It should be pointed out that 
these two indications are not independent but are probably closely related. The 
existing evidence suggests that both of these indicators are probably manifestations 
of a singularity in solutions to the boundary-layer equations at separation. Only in the 
case of two-dimensional steady flow, however, has the possibility of a mathematical 
singularity at  the separation point been completely verified. 

In  any event, these common features of numerical solutions to various types of 
separation suggest a plausible strategy for determining the nature of unsteady three- 
dimensional laminar boundary-layer separation. Solutions have been obtained, by 
the methods outlined above, to  the unsteady three-dimensional boundary-layer 
equations for flows which should lead to separation. These solutions and a dkcussion 
of their implications are presented in Q 4. The solutions were monitored to determine 
if and when the number of iterations required for convergence and the vertical 
component of velocity begin to increase rapidly. The occurrence of these events is 
taken, by analogy with solutions to two-dimensional steady flow, two-dimensional 
unsteady flow and three-dimensional steady flow, as an indication of impending 
separation. The physical nature of three-dimensional unsteady laminar boundary- 
layer separation is inferred from the behaviour of the solutions as separation is 
approached. 

These results indicate that three-dimensional unsteady separation is characterized 
by the turning of the flow, as seen in a moving co-ordinate system, so that the stream- 
lines form an envelope which is a separation line, as in the steady three-dimensional 
case, and that this process occurs away from the wall and is best observed in the moving 
co-ordinate system, as in the unsteady two-dimensional case. 

2. Transformation to a moving co-ordinate system 
We consider the general three-dimensional unsteady boundary-layer problem for 

an incompressible constant-property fluid moving over a surface whose radii of 
curvature are large compared with the thickness of the boundary layer. The boundary- 
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FIGURE 1. Body-fixed boundary-layer co-ordinate system. 

layer equations and boundary conditions for this problem, in a rectangular Cartesian 
co-ordinate system where X and ij are the orthogonal co-ordinates on the surface of 
the body and 5 is the co-ordinate normal to the body surface (figure 1)) are 

au av aw -+=+- = 0, ax ay  ax 
au -au ai i  au au, - au, - au, azu 
-+u-+G-+G- = ~ + u , - + v 8 - + v - )  
at ax ay az at az ag a22 

U ( Z ,  ij) 0, i) = V ( X ,  g, 0, t )  = W(S, ij) 0, i) = 0) 

lim u(x, ij, Z, i) = u,(Z, ij, i), limv(z,?j, 5, i) = '2?8(z, ij, t). 
h - t m  La, 

(4) 

Here u, V and w are the velocity components in the z ,  ?j and 5 directions, respectively. 
We wish, however, to examine the flow in a moving oo-ordinate system with 

co-ordinates x, y and z parallel to Z,  g and Z, respectively. The velocity components in 
the moving (x, y, z )  co-ordinate system are denoted by u, v and w, respectively. This 
new, moving co-ordinate system is assumed to be moving parallel to the x axis with a 
velocity u ( t )  and parallel to the ?j axis with a velocity v ( t ) .  The relationships between 
the fixed and moving co-ordinates and between the velocity components in these 
co-ordinate systems are 

z = x + j D ( f ) d t ,  ?j = y + J  9 ( f ) d f ,  z = x, t = t, 
u = u + u ,  v = v + v ,  w=w, 

where the overbars refer to the fixed co-ordinate system. In the moving co-ordinate 
system the boundary-layer equations and the corresponding boundary conditions 
become 

au av aw -+-+- = 0, 
ax ay az (5) 
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We now note that, if the external velocity distributions in the fixed co-ordinate system 
are functions only of linear combinations of X and f and of and k, i.e. 

1 

z8(5 y, f) =fl(az 4- bf, C 4  + df), E,(z, y, f )  = f,(aZ + bf, c y  + dk), 

and if the relative velocity [ D ( t ) ,  7(t)] of the two co-ordinate systems is constant, 
the external velocity distributions in the moving co-ordinate system are 

u,3(%, y, t )  = fi(@x + aDt f bt, c y  + c v t  + dt)  - u, 
v8(2,y, t )  = f2(ax 4- U 8 t  + bt, cy + c v t  +dt )  - 7. 

If the relative velocity 8 is taken as - b / a  and the relative velocity 
- d / c  we obtain 

and 

is taken as 

u 8 ( x ? Y ~ t )  =fl(ax,cy) +b/a,  v8(x,y,t) =f2(ax,cy) - k d / C  

u(x,y,O,t) = +b/a, v(x,y,O,t) = +c/d .  

Thus, in the moving co-ordinate system, the external velocities are independent of 
time and the wall boundary conditions are constant, so that the problem posed above 
is steady. We now limit our consideration to those problems which are steady in the 
moving co-ordinate system. 

3. The semi-similar transformation 
Even in this case, where the flow is steady in the moving co-ordinate system, there 

are still three independent variables (x, y, z) and the boundary-layer problem is 
difficult. To make the problem tractable, we use the method of semi-similar solutions 
(Williams 1975) to reduce the number of independent variables further. We introduce 
the new independent variables 7 and 6 defined by 

7 = z / v ~ g ( x , y ) ,  c = t ( X , Y )  

and introduce a pair of functions F ( 6 , v )  and (I([, 7)  defined such that 

= u8 aF(t, 7)/a7j v8 aG(67 7)/a7> 

It is easily shown by direct substitution that this choice satisfies the continuity 
equation. If the velocity components given by (9) and their derivatives are introduced 
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into the x and y momentum equations (6) and ( 7 )  and it is remembered that in this 
co-ordinate system the flow is steady, one obtains the following pair of coupled 
partial differential equations in the two variables 7 and 5: 

a3G 

In (13) ,  u8, v8, g, x and y have been normalized by introducing the dimensionless 
variables 

where U, and 1 are some characteristic velocity and length for the problem under 
consideration. 

If semi-similar solutions are to exist, the coefficients A,  B ,  C, D, E, H ,  I and J must 
be functions of 5 alone. There are eight of these coefficients but we may construct 
four relations among them by noting that ut,  v:, g * and 6 must be continuous functions 
of x* and y* .  Thus the second derivative of each of these functions with respect to 
x* and y* is independent of the order of differentiation. If (13a)  is differentiated with 
respect toy*  and (13c) with respect to x* and the results combined with the definitions 
( 13), one obtains 

E'H - A'I = - 2AD+ 2BE + E(J-A).  (14a)  
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Similarly, one obtains 

B'I  - D'H = B E  - D J ,  

J ' I  - C'H = - 2BC + J (2D + E - C ) ,  

I 'H - H'I = I (2B  + J )  - H(2D + E ) ,  

where the primes indicate differentiation with respect to [. 
There are eight coefficients A ,  B, C,  D ,  E ,  H, I and J and there are four relations 

(14a-d) among these coefficients. Thus four of the coefficients may be chosen arbi- 
trarily. In  most practical cases, the outer flow is irrotational, so that the component 
of vorticity normal to the wall vanishes outside the boundary layer, i.e. 

av;/aX* = au:/ay*. 

Imposing this restriction yields an additional relation between two of the coefficients: 

E = (v!/u~)~J. (15) 

Thus, if the outer flow is to be irrotational, only three of the eight coefficients may be 
chosen arbitrarily. Further, since for semi-similar solutions both E and J must be 
functions of [ only, the ratio vz/u$ must be a function of [ alone if the outer flow is 
irrotational. 

The assumption of an irrotational outer flow imposes a restriction on the shape of 
lines of constant [. The slope of constant-[ lines in the x, y plane is given by 

If the outer flow is irrotational then, as noted above, the ratio v,*/u; is a function 
of ( alone and the slope of lines of constant ( is a function of [ alone. Hence lines of 
constant [ are straight lines in the x, y plane and, if separation occurs, the separation 
line will be a straight line. 

A direct solution to a general three-dimensional boundary-layer problem by the 
method of semi-similar solutions would be initiated with known velocities u "(2, y) 
and v*(x, y)  outside the boundary layer obtained from a solution of the inviscid flow 
field. With the external velocity distribution known one would then obtain the scaling 
functions g(x,y) and ((x, y) and the coefficients A ,  B, C, D,  E ,  H a n d  I from (13)-(15). 
Finally, with all the coefficients known, the solution of (10) and (1  1 )  could be obtained 
by standard numerical methods which are both rapid and accurate. It has been 
poin.ted out (Williams 1975), however, that  such direct solutions are not possible and 
that, in fact, a semi-similar transformation does not exist for every possible combination 
of external velocity distributions. In  the present work, we employ an indirect method 
of solution in which four assumptions are made relating the coefficients given in (13), 
The additional coefficients are obtained by solving (1  4) and (1  5) and finally the external 
velocities and scaling functions g(x, y) and ((x, y) are obtained by solving (13). Once 
all of the coefficients defined in (13) are known, the solution of (10) and (1  1 )  is rather 
straightforward by modern numerical techniques. 

The four assumptions relating the coefficients defined by (13) which are employed 
in the present analysis are (i) that the outer flow is irrotational, (ii) that the external 
velocity uz is a function of [ alone, specifically u; = 1 - 6, (iii) that the coefficients 
A ( [ )  and B([ )  are related by A ( [ )  + 2B(() = 1 and (iv) that the coefficient H([) is 
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given by H(6)  = 6. As noted above, the assumption of irrotational flow implies that 
lines of constant 6 are straight lines in the x*, y* plane. The equations for these straight 
lines will be determined later. The second assumption, when combined with the first, 
implies that v! is also a function of 6 alone. The third assumption leads to the relation 
us* g2 = x*, which, when combined with the fourth assumption and (1 3 f ), yields the 
result 6 = x*m(y*). When thisresult is used in (139)  one obtains m(y*)  = 1/ (1  -ay*),  
so that the scaling functions g(x, y )  and [(x,y) become 

g2 = x*/us*, 6 = x*/(l -ay*)  

and each of the eight coefficient.s given by (13)  can now be written in terms of @([) 
and vZ(6). Therelationship between us*([) and v$([) comes from the auxilliary equations 
(14a-d), which in the present case reduce to the single equation 

where C, is a constant of integration. In the present case, with the assumed form of 
us* we obtain 

us* = 1 - 1 - 4 2 .  
2 

In  summary then, we have for the present analysis 

us*= 1-6, vt= 1--1 2ag2, (17) 

6 = x*/(1 -ay*) ,  g2 = .*/us* (1% (19) 

and the coefficients defhed by (1 3)  become 

A(<) = -6/P -613 B(6) = ac1 - A ( < ) ) ,  C(6)  = -a2E2A(6), 

D(E) = a2t2(1 - +a62)/(2(1 - < I 2 ) ,  NO = -W), H ( 6 )  = <, 

I ( [ )  = a%( 1 - &a6"/( 1 - g), J(6 )  = - a[2/( 1 - tap) .  
It is noted that the x* component us* of the external velocity is linearly retarded 

in the x* direction at  a rate which increases with y* if a is positive and decreases with 
y* if a is negative. The y* component v: of the external velocity is uniform if a is zero, 
decreases with increasing x* or decreasing y* if a is positive and increases with in- 
creasing x* or decreasing y*  if a is negative. The non-dimensional pressure gradients 
in the x* and y* directions, as seen by an observer in the moving co-ordinate system, 
are 

The pressure gradient in the x* direction is always positive, but the pressure gradient 
in the y* direction depends upon both the value of a and the value of 6. 

The physical significance of the parameter a is now clear. If a = 0, we have a linearly 
retarded outer flow in the 2 direction with a corresponding pressure gradient in the 
2 direction and a uniform outer flow in the y direction. This corresponds to the flow 
over a certain infinite cylinder and the boundary-layer development may be treated 
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a 

1 
0.8 
0.6 
0.4 
0.2 
0.0 

- 0.2 
- 0.4 
- 0.6 
- 0.8 
- 1.0 

1.0 
1.0 
1.0 
1.0 

i7 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.4 
0.6 
0.2 
0.2 

B tsep 

0.2 0.3062 
0.2 0.3062 
0.2 0.3049 
0.2 0.3023 
0.2 0.2984 
0.2 0.2934 
0.2 0.2875 
0.2 0.2810 
0.2 0.2739 
0-2 0-2666 
0.2 0.2590 
0.2 0.480 
0.2 0.6459 
0.4 0.3399 
0.6 0.3799 

TABLE 1 

at Ssep 

1.849 
1.777 
1.718 
1.662 
1.601 
1.562 
1.482 
1.440 
1.391 
1-342 
1.307 
1.998 
2-083 
1.878 
1.917 

Peep 

1.868 
1.811 
1.752 
1.691 
1.630 
1.571 
1.513 
1.459 
1.408 
1.360 
1.317 
2.018 
2-144 
1.898 
1.934 

by the theory of Sears (1948). If a is non-zero, then the outer flow in the y direction is 
not uniform and a pressure gradient in the y direction arises. This alters the pressure 
gradient in the x direction because the outer flow is irrotational. The parameter a, 
then, is a measure of the non-uniformity of the outer flow or, more specifically, a 
measure of the pressure gradient in the y direction. 

4. Solutions and their implications 
The problem of determining the characteristics of the laminar three-dimensional 

unsteady boundary layer for the external flow represented, in the moving co-ordinate 
system, by (16) and ( 1 7 )  has now been reduced to that of obtaining solutions to (10) 
and (11) subject to the boundary conditions given by (12) and with the prescribed 
variation of the coefficients A ( ( ) ,  I?((), C((), D((), E(() ,  H ( ( ) ,  I ( [ )  and J ( ( ) .  As long 
as the coefficient H(( )P’ ( ( ,T / )  + ~ ( ( ) G ’ ( [ , T / )  is positive, (10) and ( 1 1 )  form a pair of 
coupled well-posed parabolic partial differential equations. Solutions have been 
obtained for a number of values of the parameter a, which is a measure of the pressure 
gradient in the y direction, and for various combinations of fl and 8, which, in the 
present case, are a measure of the unsteadiness in the original flow. The values of a, 
fl and 3 for which solut,ions have been calculated are indicated in table 1. These 
solutions were obtained using an implicit finite-difference technique similar in detail 
to that of Blottner (1970). In  this technique, the solution starts at  5 = 0, where the 
solution is similar, and proceeds in the direction of increasing 5. The ( derivatives are 
represented by two-point backward differences at  the second station and by three- 
point backward differences a t  subsequent stations. The resulting finite-difference 
equations at each station are nonlinear, but are treated as linear equations in which 
the coefficients are updated after each iteration. The iteration process a t  each ( 
station is repeated until the velocity profiles, for two successive iterations, agree to  
within a prescribed small tolerance. 

In  some of the cases investigated, one of the normalized velocity components 
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I 

0.1 ' I 1 I 

0 0.1 0.2 0.3 

5 
FIGURE 2. Variation of normal velocity component with 6 ;  u = 1, = = 0.2. -, z* = 0.5704; 

- _ _  , Z *  = 1.0898; ---, Z* = 2.1664; , z* = 3.5039. 

F'(& 7)  or G'(<, 7)  becomes negative and the numerical integration proceeds into a 
region of reverse flow (for one velocity component). It has been pointed out (Williams 
1977) that integration into regions of reverse flow of one of the velocity components 
is permissible, provided that the coefficient H ( [ )  a'([, 7) + I ( [ )  G ' ( 6 , r )  remains positive. 
In all the solutions obtained in the present work, this coefficient was positive. 

In  the present investigation, we have considered only cases where u and v are 
both positive. If separation occurs, these flows represent flows in which separation 
moves forwards along the body. In  the moving co-ordinate system, the separation is 
stationary and the wall moves downstream (in the + % and + ij directions) with respect 
to separation. The cases in which u and v are both negative correspond to flows 
in which the separation moves downstream relative to the fixed wall or, in the moving 
co-ordinate system, the wall moves upstream relative to separation. With D and P 
both negative, the coefficient H ( [ )  F(<, 7)  + I(<) G'(6,y) is generally negative near the 
wall, so that (10) and (1  1 )  become ill-posed parabolic equations. Numerical solutions 
for such equations are not possible at this time. The interesting case in which and 7 
are of opposite sign, which corresponds to a rotating separation line over a fixed wall 
or, in the moving co-ordinate system, to a rotating wall beneath a stationary separation 
line, has not been considered here. 
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FIGURE 3. Profiles of (a) the x and (b)  the y component of velocity in the moving co-ordinate 
system; a = 1, i7 = p = 0.2. -, E = 0.095; ---, = 0-275; --, 5 = 0.3062. 

Since each of the solutions obtained had %he same general characteristics, only 
the results obtained for the case a = 1, = 7 = 0.2 will be presented here in detail. 
In  this case, as in others, the solution was started at 6 = 0 and proceeded in the 
direction of increasing 5. At each cstation, iteration ww required to obtain a converged 
velocity profile. For small c, the number of iterations required to obtain convergence 
was rahher small (6 iterations f o r t  = 0.05,8 iterationsfor c = 0.186, etc.). At 6 = 0.235, 
the number of iterations required for convergence began to grow slowly (9 iterations 
for t; = 0.235, 12 iterations for 6 = 0.303) and finally, a t  approximately < = 0.3060, 
the number of iterations required for convergence began to increase rapidly (16 
iterations a t  5 = 0.3060, 18 iterations at  = 0.3061, 24 iterations a t  < = 0.3062). It 
was not possible to obtain a solution at  6 = 0.3063 in what was deemed to be a reason- 
able number of iterations (120). The rapid increase in the number of iterations required 
for convergence as approaches 6 = 0.3063 is accompanied by a rapid increase in the 
vertical component of velocity 

particularly in the outer portions of the boundary layer. This behaviour is indicated 
in figure 2, which shows, for example, that for 

Z* = z ( U / V E ) ~  = 3.5039, 
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FIQURE 4. Profiles of (a) the 2 and (b) the y component of velocity in the fixed co-ordinate system; 
a = 1, U = V = 0.2. -, 6 = 0.096; ---, E = 0.275; --, 6 = 0.3062. 

w* increases by a factor of 100 between f = 2.5 and [ = 3.062. The combination of a 
rapid increase in t,he number of iterations required for convergence and a rapid 
increase in the vertical component of velocity is taken, as explained earlier, as an 
indication of the approach of boundary -layer separation. 

The question now is: what are the physical characteristics of separation? A hint 
as to what these characteristics are may be obtained from the velocity profiles. Pigures 
3 (a)  and ( b )  show the normalized velocity profiles for the x and y components of velocity 
respectively, for several values of 5, as seen in the moving co-ordinate system. The 
corresponding velocity profiles in the fixed co-ordinate system are shown in figures 
4(a) and ( b ) ,  respectively. In the present case (a = 1)  the pressure gradients in both the 
x and the y direction are positive for 0 < f < 0.3063. The pressure gradient in the 
x direction is, however, much greater than that in the y direction. As a result, the x 
component of momentum is depleted much more rapidly than the y component of 
momentum in the lower region ofthe boundary layer, and the x component of velocity 
u decreases and finally reverses, while the y component of velocity is reduced 
but not reversed. We note that the x component of velocity is reversed in both the 
moving and the fixed co-ordinate system and that these regions of reverse flow 
were obtained without computational difficulties for the reason mentioned earlier. 

The large changes in the x component of velocity accompanied by relatively small 
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FIUURE 5. Variation of flow deflexion angle /? with 7 for several values of 6;  a = 1, 0 = 7 = 0-2. 

-, 6 = 0.095; ---; 6 = 0.275; --, 6 = 0.3062. 

changes in the y component of velocity give rise to relatively large changes in the 
flow direction. The projection of the velocity vector on the plane 2 = 0 makes an 
angle p with the x axis, where 

/3 = arctan ( v / u )  = arctan (va G’/u, F’). 

The variation of /3 with 7 is presented in figure 5 for the values of 6 for which velocity 
profiles are shown. As is increased from zero, p increases, reaches a maximum near 
the wall, then decreases again for large 7. Further, this maximum increases in magni- 
tude a5 separation is approached because of the rapid depletion of x momentum. The 
value of ,8 at the wall in this system (where the wall is moving) is given by 

pW = arctan ( V / U ) .  
- -  

For the case presented in figure 5,  pw = 0-7854 independent of 5. 
Now for three-dimensional steady separation there is a maximum (or minimum) 

flow angle p, which occurs at the wall. This is the angle of the so-called limiting 
streamlines. As ordinary steady three-dimensional separation is approached, the 
angle of the limiting streamlines increases (or decreases) rapidly to approach the 
angle of the separation line, indicating limiting streamlines which become hngential 
to the separation line (Williams 1975). 

The existence ofa maximum in the angle/?, a maximum which increases as separation 
is approached, suggests that the flow behaviour in the present case is analogous 
with that in the three-dimensional steady case. The main difference between steady 
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local lines f ;  = constant with 6 ;  a = 1, = = 0.2. 

and unsteady flow appears to be that separation, which occurs at  the wall in steady 
flow, occurs away from the wall in unsteady flow. If  this is indeed true, the maximum 
value ,iYmax of p in the boundary layer should approach the angle of the separation 
line as separation is approached. In the moving co-ordinate system, each line of con- 
stant 6 is given by 

6 = x*/(i - ay*) 

y* = (1 -x* / t ) /a .  or, alternatively, 

Thus the angle which each line of constant t makes with the x axis is given by 

,dS = arctan ( - i / t a ) .  

Since separation occurs at  a fixed value of c, say EBep, the angle the separation line 

In figure 6 the values of p,,, and p, have been plotted as a function of 6. If the 
value off; at the last station for which convergence is obtained is taken to be tmsep, 
then in the present case (a = 1, i7 = V = 0.2) 

,iYmp = arctan ( -  1/0-3062) = 1.868. 
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The results shown in figure 6 clearly indicate that &a, is rapidly approaching PEP 
as separation is approached. That this is the case for all the flows investigated is 
indicated in table 1, where the values of ,(I,,,,, at the last station for which convergence 
was obtained are compared with the values of PSeP determined from (22). In each case 
Pmax approached PSeD from below. 

Thus, in the moving co-ordinate system, the streamlines turn and approach a 
condition of tangency with the separation line. The angle p of the instantaneous 
Streamlines in the fixed co-ordinate system is related to the corresponding angle P in 
the moving co-ordinate system by 

On the other hand, the angle Psep of the separation line is the same in both the moving 
and the fixed co-ordinate system. Clearly, since the streamlines in the moving co- 
ordinate system become tangential to the separation line, the oorresponding instan- 
taneous streamlines in the fixed co-ordinate system cannot become tangential to  the 
separation line. Separation is most easily identified, then, in the co-ordinate system 
moving with separation, as in the two-dimensional unsteady case. 

It is interesting also to consider the effect of variations in the parameter a. For 
a = 0, the flow corresponds to flow over an infinite cylinder with axis parallel to the 
x axis and separation occurs along a line parallel to the x axis, i.e. /? sep.= 471. For 
a > 0, there is flow reversal of the x component of velocity and separation occurs 
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FIUURE 8. Graphical representation of unsteady three-dimensional 
boundary-layer separation. 

along lines for which psep > &r, as described above. For a < 0, the pressure gradient 
in the x direction is still positive (adverse), but the pressure gradient in the y direction 
is negative (favourable). As a result of this combination, the x component of velocity 
near the wall is decelerated while the y component of velocity near the wall is acceler- 
ated. Separation occurs in this case alone lines for which psep < &r, as indicated in 
table I. 

There is one additional check which may be made to verify the picture of unsteady 
three-dimensional separation which is emerging. If unsteady three-dimensional 
boundary-layer separation is characterized by the flow within the boundary layer 
turning to become tangential to the separation line a t  separation, as indicated above, 
then the velocity component normal to the separation line should approach zero at  a 
point in the boundary layer as separation is approached. Figure 7 shows the variation 
of the normal component unor of velocity with 7. Here, u,,, is given by 

u,,, = ( ~ , * P ’ C O S / ~ ~ ~ + V ~  G’sin/3sep)/(~~~~s/3seP+v,*sin~sep).  

The normal component of velocity does indeed approach zero as separation 

(EseP N 0.3062) 

is approached and the value of Pmax and the minimum value of u,,, occur at  the same 
value of 7, as one might expect. The velocity profiles shown in figure 7 are quite 
similar to the velocity profiles in a co-ordinate system moving with separation in 
unsteady two-dimensional flow (Williams & Johnson 1974). 

From the resulk obtained, a clear picture of unsteady three-dimensional boundary- 
layer separation has emerged, at least for the case of upstream-moving separation. 
In numerical solutions of the three-dimensional unsteady boundary-layer equations, 
separation is heralded by (i) a rapid increase in the number of iterations required to 
obtain converged solutions at each station and (ii) a rapid increase in the vertical 
component of velocity. Physically, separation is in this case characterized by the 
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flow turning to become tangent.ia1 to the separation line in a reference system moving 
with separation. The separation line in the unsteady case lies within the boundary 
layer, away from the wall, whereas the separation line in the steady case lies on the 
wall. This, then, is the three-dimensional generalization of the two-dimensional 
(Moore-Rott- Sears) model. 

This description of unsteady three-dimensional boundary-layer separation has been 
obtained from numerical solutions of the boundary-layer equations, solutions which 
can only approach and never reach separation because of tne singular behaviour of 
the solutions close to separation. Nevertheless, it is not difficult to speculate on the 
physical nature of the flow along the separation line and just downstream of this 
line. Since the flow along the separation line is tangential to  the separation line while 
there is flow normal to the separation line both above and below it, the separation 
line must represent the front of a bubble-like structure which is embedded within the 
flou. Figure 8 depicts such a structure. Streamlines which become part of the separation 
line originate upstream and approach the separation line. These streamlines become 
tangential to the separation line, so that the separation line is an envelope of all of 
these streamlines. Eventually, each streamline splits so that part of the flow passes 
over and part of the flow passes under the separated region as indicated in figure 8. 
Figure 8 may be considered ae a graphical representation of the flow in the moving 
co-ordinate system, in which, in the present analysis, the flow is steady. 
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